
Time to Upgrade: Making Websites Accessible to All

Sowmya Jayakirthi and Usha Rani Gunapu, VMware

The Center for Information-Development Management
710 Kipling Street • Suite 400 • Denver, CO 80215

CONTENTS

Time to Upgrade: Making
Websites Accessible to All
Sowmya Jayakirthi and Usha
Rani Gunapu
page 1

A Seat at the Table
Dawn Stevens
page 2

DITA as Code - A modern
approach to the classic
standard
Michal Skowron and Pawel
Kowaluk
page 8

Writing for Localization 101
Dana Aubin
page 14

Manager’s Calendar
page 18

CIDM Sponsors Highlight
page 19

JUNE 2022
VOLUME 24, ISSUE 2

1

In today’s world, our requirement around
developing technologies and modes of interaction
that are inclusive and that serve greater good is
becoming more obvious. Day in and day out we
interact with multiple websites. While browsing,
you might have come across websites that are
designed well and easy to access, and a few that
are not designed well. Do you know how many
of these websites are accessible to the larger
audience? The answer is, not many.

The main concept of web accessibility is that
websites should be developed and designed to
enable all kinds of users to access and experience
the sites equally, irrespective of their physical
abilities. As per the World Health Organization
(WHO), there are more than 1 billion people
who have some form of disability, which is
around 15% of the world's population. The
type of disability includes visual, hearing, motor,
and cognitive impairments. Web accessibility is
just not about providing a valuable experience
to users with disabilities, but also to users who
love to multitask, who have age-related dexterity
issues, or who are in certain circumstances
like slow internet, low lights, bright lights, or
temporary disabilities like a hand fracture.

The power of the Web is in its universality. Access by
everyone regardless of disability is an essential aspect.

 — Tim Berners-Lee

As Technical Writers, it is our responsibility to
ensure the content that we create is not only
technically accurate but also accessible by all
kinds of users. The best way to ensure our
content is accessible is by following the Web
Content Accessibility Guidelines (WCAG).
Section 508 is a law that mandates websites to
be safe and accessible for people with disabilities.
Many countries have laws built around WCAG
principles. For more information on your

country specific policy on accessibility, please
check Country Specific Accessibility Policy.

WCAG works on the principle that content
and websites should be Perceivable, Operable,
Understandable, and Robust (POUR). The
guidelines are categorized around three types of
conformance levels:

	♦ Level A – This is minimal compliance and
is easy to meet.

	♦ Level AA – This is an acceptable compliance.
Most of the accessibility regulations are built
around this level. WCAG recommends your
website should meet AA level to help cater to
many users.

	♦ Level AAA – This is the optimal level. This
helps cater to most of the users.

Basic Guidelines

Here are a few WCAG guidelines that can
be easily implemented on your websites and
content. For more information on other
guidelines, see WCAG Website.

Design

1.	 The navigation path should be easy,
consistent, and should have multiple ways to
navigate. Include breadcrumbs to help users
with orientation.

2.	 Your site should display well with different
viewport sizes. For example, mobile phones
and large screens.

3.	 Provide ample contrast between the
foreground and background. A contrast ratio
of 4:5:1 is recommended. Also, color should
not be the only way to convey information
or instructions.

(continued on page 5)

BEST PRACTICES • JUNE 2022

From the Director

 Dawn Stevens

FROM THE DIRECTOR

Best Practices Newsletter

A publication of The Center for
Information-Development

Management.
710 Kipling Street, Suite 400

Denver, CO 80215
Phone: 303-232-7586

Fax: 303-232-0659
www.infomanagementcenter.com
info@infomanagementcenter.com

Publisher and CIDM Director

Dawn Stevens

Production Coordinator

Lisa Lambert

How to submit an article:

Kathy Madison
kathy.madison@comtech-serv.com

How to join the CIDM:

info@infomanagementcenter.com

©2022 Comtech Services, Inc.

All rights reserved.
Printed in the USA.

Connect with us on LinkedIn

2

A Seat at the Table

Remember those big family holiday dinners
when you were young? The dining room table
was only for adults and a temporary solution
had to be found for the children – typically
a fold-out table, in another room, set with
mismatched, unbreakable dishes. In my own
children’s case, it wasn’t even a table when we
were at Grandma’s, but a large moving box with
a table cloth draped over it. Not only were they
separated from the rest of the family, they didn’t
even have a place to put their knees.

The only food at the children’s table was that
brought to you on a plate. You couldn’t simply
serve yourself another spoonful of mashed
potatoes when your plate was empty. Instead,
like the dog (who was often at least in the same
room as the adults), you had to go beg for the
table scraps if you wanted more.

Although the younger kids often enjoyed the
freedom of the children’s table, taking full
advantage of the opportunity to play with
their food and talk with their mouths full,
the older children were typically forced into
a parental role – cutting food into bite-sized
pieces, mopping up spilled drinks, and policing
squabbles. The older you got, the more you
gazed longingly at the other room, wondering
when you would finally be old enough to be
given a seat at the other table, and perhaps
secretly hoping that your parents would have a
fallout with some of your aunts and uncles to
free up space.

A seat at the adult table symbolized so many
things: you could be trusted not to embarrass
your parents; you held a higher status than the
kids left behind; you would be privy to the
secrets the adults kept from the children; and,
most importantly, you were old enough to be
taken seriously. Your voice would be heard. You
could speak for the children, represent their
interests in important conversations held at that
table.

Often when you finally were promoted to the
adult table, the realization kicked in that the
kid’s table was much more entertaining. At the
adult table, you had to be on your best behavior;
rules that were certainly not enforced at the
kid’s table were in full effect – sit up straight;
elbows off the table; don’t talk with your mouth
full; don’t wear your napkin on your head; and
many, many more. Conversations at the adult
table were boring, and you weren’t invited
to participate, even if you could have talked
intelligently about the housing market or the
various health issues facing your aging relatives.
Your promotion to the table was likely due to
space considerations or a grudging nod that it
wasn’t fair for you to remain with those much
younger than you, rather than any kind of
invitation to participate as an equal.

The parallels to this familiar holiday occurrence
are clear within our professional lives. I hear
constantly from technical communicators
longing for a seat at the developer’s table. The
potential benefits are clear:

	♦ We’d hear about product plans and changes
immediately.

	♦ We’d be able to more easily ask for
information or clarification on topics we’re
writing.

	♦ We’d be able to influence the direction of
the product.

	♦ We’d gain respect from the developers as
equals on the team.

We believe that a seat at the developer’s table
will give us a forum to be heard and the
opportunity to make a difference to our users’
experience.

BEST PRACTICES • JUNE 2022

FROM THE DIRECTOR

CIDM

The Center for Information-
Development Management is

an organization of information-
development, training, and

support managers from around
the world. The CIDM facilitates

collaboration regarding
information development

among skilled managers in the
information industry.

As a CIDM member, you will
receive many member benefits,

including a free newsletter
subscription, conference

registrations for our annual
conference and discounts on

Comtech workshops. You also
gain access to the member’s
website with archives of past

newsletter articles.

The most significant benefit of
membership will come from
the contacts you will make

with colleagues in information
development.

3

Nevertheless, we are often not invited to the
table, even when we ask to be. We take offense
and we feel undervalued. But re-read those
“benefits” for attending—they are self-centered,
focused on what we might gain from the
opportunity. What’s in it for the developers, and
what is it going to cost them? Additional people
at the table implies more time spent explaining
and debating, slowing the design and decision
process. It introduces more schedule conflicts
to overcome (especially since very few technical
writers I know have the luxury of supporting
only one development team). In her Anatomy
of Change ModelTM, Val Swisher points out
that change is really about people and resistance
comes largely from fear. Perhaps the lack of
invitation is not so much disrespect, than the
fear of change and the disruption it brings. We
need to do a better job framing our request:

	♦ With first-hand knowledge of the design
decisions, we’ll require less one-on-
one meeting time with you to gather
information.

	♦ Review times will be shorter because our
content will be more accurate from the
information we glean from the table.

	♦ Our knowledge of the users can help to
prevent time-intensive rework by identifying
problematic areas before time is spent in
development.

	♦ Because words are our strength, we can
record and distribute all decisions and action
items from the meeting saving you time.

In other words, in order to effectively advocate
for a seat, we have to understand the value
we bring, not the value we receive, and, of
course, we need to be able to follow through on
whatever promises we make to gain our seat.

If after reframing, you’re still lacking the
invitation, I point to Shirley Chilsom, the first
African American woman in Congress, who said,
“If they don't give you a seat at the table, bring a
folding chair.”

If it’s important enough to you, compromise –
find ways to get your foot in the door:

	♦ Promise to simply be a fly on the wall until
they get used to your presence.

	♦ Ask to be present at only a designated
portion of the agenda.

	♦ Suggest that you don’t need to attend every
meeting, only once a month to start.

	♦ Ask for the meetings to be recorded and
follow up on what you heard via email,
giving them a chance to see that your input
would be useful live rather than in writing.

As you work to be invited, keep in mind that like
our childhood expectations for the adult table,
once at the table, our professional expectations
for the developer’s table are often not everything
we dreamed they would be. There are rules
to follow and an established pecking order.
The seat does not guarantee a voice, let alone
symbolize equality. However, rather than become
disillusioned, perhaps we need to recalibrate our
expectations and our approach. Instead of simple
inclusion, are we really looking to transform
the table in some way? To tear it apart and
completely rebuild it into an image that we have?
In that case, is it really a table we want to sit at in
the first place? To continue the food analogy, is
it serving something we want to eat? Perhaps we
need to build our own table to which we invite
the developers.

If we find we do want to sit at the table as it
is currently built, we need to learn how to
effectively participate within those boundaries.
We have to be willing to put some brussel
sprouts on our plate, even though we despise
them. It is highly unlikely that everything will be
sunshine and lollipops on day one. Remember,
it takes time for a child to move up to the
adult’s table, and even more time to bring about
the transition from tolerated eavesdropper to
welcome participant.

BEST PRACTICES • JUNE 20224

FROM THE DIRECTOR

We must take the time to listen and observe what
goes on at the table, before we speak up. We’re not
there to take over the dialogue, but to contribute.
One of the best pieces of advice I’ve received is to
assume that everyone at the table already knows
what you know, and in some cases are more
knowledgeable about the subject than you. Your
job is find a way to deliver new insights and new
perspectives on that existing knowledge.

If instead, we find that we want a different table,
we’re not without challenges. Now the onus is
ours to define the objectives, the rules, the criteria
for participating, and we must invite those we
want to participate. Yet, instead of encountering
the eager acceptance of a child who is invited
to move up to the adult table, we may find
reluctance to accept our invitation. It remains for
us to prove, whether attendee or host, what’s it in
for everyone else. Ironically, we see the table as a
benefit to us, but effective table management and
participation requires us to focus on how others
will benefit.

The bottom line is that everyone wants to be
heard, to be included, to be treated as equals,
whether we are children at a holiday dinner,
employees in the workplace, or marginalized
individuals in society. The “table” has become a
symbol for that opportunity. However, we are not
always good guests or good hosts. For this reason,
we’ve chosen the table as the theme for our
Best Practices conference to be held September
19-21 in Baltimore. We’ll be digging into how to
be good hosts for our own tables, enticing the
active participation of our team at our
management table and our customers at our user
experience table, and how to be good guests at the
developer’s table and our own manager’s table. I
hope you can join us.

Dawn

“If they don't give you a seat at the table,
bring a folding chair."

ConVEx IDEAS offers 3 days of panel discussions on 12 top content related topics.

Choose from four 90-minute sessions/day

All sessions will be recorded and available immediately following the live event.

Find more information about ConVEx IDEAS and to register online, visit:

https://ideas.infomanagementcenter.com/

BEST PRACTICES • JUNE 2022 5

Sowmya Jayakirthi
VMware

A Staff Technical Writer by profession
with an experience of 15 years in
the industry. I have worked with
VMware for the last eight plus years.
I have experience working with
mainframe technology, hardware and
cloud computing services. I am keen
on learning, exploring, innovating
new technology to improve user
experience.

TIME TO UPGRADE: MAKING WEBSITES

Usha Rani Gunapu
VMware

I have around 13 plus years of
experience in the field of Technical
Communication. I am currently
working as a Manager with the
Information Experience team at
VMware and leading a team of
Technical Writers in Bangalore. My
team focuses on End User Computing
and Cloud Platform products. I
am passionate about learning,
simplification, and innovation.

(continued from page 1)

4.	 Not everyone can use a mouse or prefers
using it, so ensure your clickable buttons,
text box, and other interactive elements,
etc. are keyboard accessible. It is good
practice to check if your interactive
elements are ARIA labeled. ARIA labels
are string of text that is the accessible
name for a UI object.

5.	 One of the other elements that is
frequently used on a website is a search
bar. The location of the search bar should
be predictable and should be keyboard
accessible.

Links
1.	 Skip link is easy to implement and are

a helpful accessibility feature. You can
provide direct access to the main content
through skip links. This will save a lot of
time for keyboard and for screen reader
users who do not have to go through
multiple nested links.

2.	 Do not write links in capital letters.
In general, capital texts are harder to
read, especially for those with reading
disabilities and screen readers.

3.	 Avoid screen tips and tool tips. They are
not easily accessible by keyboard and
non-mouse pointers like touch screens
and eye trackers.

4.	 Add visual cues to inform the users to
differentiate hyperlinks from text. For
example, add underline or contrasting
colors when links are hovered.

Content

1.	 Add language tagging to indicate screen
readers to switch to another language.

2.	 Ensure heading, tables, and other
elements are properly tagged for screen
readers to understand the content.

3.	 Do not write instructions relying solely
on sensory characteristics like size,
position, color, or sounds. For example,
highlights in your instructions may be
bold or in a color that cannot be read
aloud by the screen reader.

4.	 If possible, avoid PDFs as it provides
low user experience to users with vision
impairments. If PDFs are not annotated
properly with structure tags, screen
readers find it difficult to interpret and
can read out of order. If you still prefer a
pdf, try to provide it as an alternative to
webpages or other editable documents.

 Visuals

1.	 Add alternate text to visuals. Alternate
text or ALT text should be simple to
understand, relates to the context, and is
not heavy with keywords.

2.	 Add closed captions and transcripts.
This not only helps a user who is visually
impaired but also in conditions where
you are in a noisy environment and
would want to watch a video.

3.	 Avoid GIFs as they contain actions
and visuals and are difficult to explain
in ALT text. If you need GIFs, ensure
they are not longer than 5 seconds and
provide pause option.

4.	 Scalable Vector Graphics (SVG) provides
many accessibility benefits to disabled
users. SVG images are scalable as they
can be zoomed in and resized by the
reader as needed. Scaling can help
users with low vision and users of some
assistive technologies.

The power of the Web is
in its universality. Access
by everyone regardless of
disability is an essential
aspect.

 — Tim Berners-Lee

BEST PRACTICES • JUNE 2022

TIME TO UPGRADE: MAKING WEBSITES

6

Best Practices
As an organization, you can follow the listed best practices
in your writing guidelines and processes to be Section 508
compliant:

	♦ Incorporate accessibility as part of your
documentation or web designing process.

	♦ Consult with an accessibility expert before
designing your websites, visuals, and documents.

	♦ Do not rely entirely on tools for checking your
website accessibility score. A combination of
automatic and manual tests is recommended for
effective results.

	♦ Include resources around accessibility as part of
your hiring process.

	♦ Conduct refresher courses on accessibility for
your team.

	♦ Plan for audits periodically.

At VMware, we have been practicing the accessibility
principles very closely to design our websites, documents,
and graphics. We have an in-house tool that provides self-
service with respect to accessibility testing.

Think Beyond

Following the best practices and guidelines from WCAG
will make your websites and content accessible, however,
there is no limit to how you can further enhance user
experience. While we were researching how to improve user
experience, we realized leveraging assistive technology can be
one of the ways.

Assistive Technology

Assistive technology has been in the industry for many
years. There are diverse types of assistive technology that
can help assist the disabled community. As of today, there
are many browser extensions and third-party software
installers that you can integrate to your website. One of the
assistive technologies that have been used extensively is the
Voice Assistive technology.

BEST PRACTICES • JUNE 2022

TIME TO UPGRADE: MAKING WEBSITES

7

During our research on Voice Assistive technology, we
could not find documentation sites with voice feature
integrated. We realized this is an area that is unexplored.
At VMware, we have now started working on a prototype
that would help us achieve this goal of integrating voice
technology in the documentation websites.

Voice Assistive Technology

Voice Assistants can be used by all kinds of users and is not
confined to people with disabilities. Users with crucial time
crunch, users with multiple monitors (multi-tasking), and
many can make use of this technology to make their lives
easier.

How does Voice Assistive Technology Work?

Voice Assistive technology is a combination of Voice
Recognition, Artificial Intelligence, and Natural Language
Processing (NLP). The speech recognition enables the
device to recognize their input and translate it from speech
to text. Once the text is interpreted, the NLP identifies
the intent behind what the user said, the meaning of the
words, as well as the context. The machine knows what you
want to search, it searches for a valid answer, and responds
accordingly. So as an output, the response is converted from
text to speech.

Benefits of Accessibility

	♦ Positive impact on your business and user experience

	♦ Caters to all kinds of users

	♦ Reduces time

	♦ Multitasking

	♦ Increases website traffic

	♦ Reduces support call

	♦ Inclusive and relevant to all

Accessibility is soon going to be necessary for all that we
design and develop. Lots of innovations and advancements
are happening in the field of accessibility, especially around
Voice Assistive technology. There is a need to realize and
leverage the potential of the existing technologies. In
future, integrating with such technologies is going to be
seamless. It is time to think out-of-the-box solutions for
accessibility and play a role in building an inclusive world.
Let us make a difference.

BEST PRACTICES • JUNE 2022

DITA AS CODE - A MODERN APPROACH TO
THE CLASSIC STANDARD

DITA as code - A modern approach to the classic standard

The title of this article may raise some eyebrows
among our fellow content specialists. We are aware
that for some of them “DITA as code” may sound
like an oxymoron or be the last thing they would
think of. Nevertheless, we decided to explore this
unconventional idea and we hope that you will
join us on this exciting journey to discover new
opportunities for the tech comm world.

Purpose of this article

This article aims to show how you can use DITA
in the docs as code model. Unlike some of the
more accessible but simpler markup languages like
Markdown, DITA offers a structured framework
for content creation. At the same time, it has
enough flexibility to fit modern workflows and
create a collaborative space for cross-functional
teams.

We’re not saying that:

	♦ DITA is a silver bullet for your content
challenges and you should always use it

	♦ DITA is better than Markdown or other
markup languages

	♦ CCMSes are pure evil

Instead, we want to convince you that:

	♦ Thinking “either DITA or docs as code” is not
right

	♦ Docs as code is not reserved only for light
markup languages and popular static site
generators

	♦ DITA can be cool

	♦ DITA can still hold up in the face of rapidly
changing modern technologies

	♦ DITA can be used in the docs as code model
and in some cases can give you more benefits
than simple markup languages

Tribute

Before we move on to the areas that we want to
explore, we would like to stop for a moment and
pay tribute to the pioneers of the “DITA as code”
idea - “DITA For Small Teams”. This project
hasn’t been active for a few years now but we still
encourage you to learn more about it at
http://www.d4st.org/

What is “docs as code”?
Docs as code isn't a specific tool or solution. It's a
philosophy, approach, model of work where you
use the same techniques, tools and processes for
documentation as you use for code.

Typically in this model, you store sources of your
documentation in a version control system, you
write your content using a markup language
and you automate the process of building and
publishing the docs. However, there are no hard
and fast rules on what tools and technologies
constitute a docs-as-code setup. That's why we are
bold enough to claim that DITA can work well in
such a setup.

If you want to read more about docs as code, you
can try these resources:

	♦ “Docs like code” by Anne Gentle

	♦ https://technology.blog.gov.uk/2017/08/25/
why-we-use-a-docs-as-code-approach-
fortechnical-documentation/

	♦ https://www.writethedocs.org/guide/docs-as-
code/

	♦ https://www.knowledgeowl.com/home/docs-
as-code

Michal Skowron and Pawel Kowaluk, Guidewire Software

8

Michal Skowron
Guidewire Software

Michał Skowron has been working
as a documentation specialist at
big and small companies in the
software development industry
since the beginning of 2012.
Michał is a committed proponent
of automating the content
delivery process and prefers
smart documentation building
to traditional typing. Therefore,
his main focus in the recent years
has been on developing and
implementing tools and solutions
that help organizations align their
technical documentation with best
practices of software development.
Michał is also a board member at
ITCQF and the originator and co-host
of the “Tech Writer koduje” podcast.

BEST PRACTICES • JUNE 2022

Goals of the docs as code model

The docs as code approach sounds interesting
but why should you bother to use it? What
benefits do you get?

Here are the main goals that docs as code tries
to achieve:

	♦ Better collaboration with developers

	♦ Easier maintenance and faster delivery
through automation

	♦ More eagerness from developers to actively
contribute to documentation - they can
create content in the same context as they
write code

	♦ Higher quality of documentation, as a
result of all the points above

	♦ Cost and time savings - you use the toolset
that is already available in the company
therefore you don't need to buy new tools,
spend time on research before buying a
new solution, or worry about being on
your own with tech-comm-specific tools
that no dev wants to touch.

Is DITA suitable for docs as code?
We believe that all the goals outlined above
can also be achieved while using DITA as the
authoring standard.

These goals don’t necessarily require a
lightweight markup language, like Markdown.
Nevertheless, docs as code and Markdown
have become near synonyms. The description
of docs as code on the Write The Docs
page, specifically lists: “Plain Text Markup
(Markdown, reStructuredText, Asciidoc)”. Tom
Johnson in his blog post about docs-as-code
tools also states that working in plain text files
is part of the docs-as-code model.

This emphasis on using plain text markup
draws the line between the docs-as-code model
with a light markup, and a help authoring
system with a binary or proprietary format and
gives us the impression that there is nothing in
between.

The use of simple markup is further cemented
by how a lot of dev teams add a Markdown
folder to their repository and render that
markdown as the documentation website. Just
look at examples for Next.js and React.

Why not DITA? We think part of the problem
is that vendors “locked” DITA and DITA OT
in their CCMSes. We hear about these systems
all the time in the context of DITA. We have
heard it so much that we started to think that
DITA == CCMS.

CCMSes are meant to be powerhouses that
provide an end-to-end solution for authoring
in DITA. Many companies purchased a
CCMS to reduce the time required for DITA
implementation. We hear stories that using
DITA without a CCMS is hard or even
impossible. Is it really true or is it because
these CCMSes were created before certain
technologies were available? These new
technologies, often freely available, open new
possibilities and allow for an easier adoption of
any open-source technology, including DITA.

Let us restate this liberating truth: DITA is an
open and free standard and nobody forces you
to use it with a CCMS. The main publishing
tool, DITA Open Toolkit, is a vendor-
independent, open-source implementation of a
static site generator for the DITA standard. It’s
actively developed, it follows trends, and is well
documented. You can add the standard and
the publishing tool to your dev workflow at no
monetary or licensing cost.

As we hinted above, DITA OT is a static site
generator, just like Jekyll or Hugo. Granted,
it is unique because you need to know XSL
to work with it, so the learning curve may be
a little steeper. But it’s still just an engine that
transforms one format into another. And so,
you are free to use DITA OT in a docs as code
setup like you would Jekyll or Hugo. You can
use a free source control system, a free editor,
and a free CI/CD pipeline.

It’s worth mentioning that DITA OT also
supports Markdown as an authoring format.

9

Pawel Kowaluk
Guidewire Software

Pawel Kowaluk has been in technical
communication since 2008. He wore
the hats of technical writer, people
manager, product manager, tools
specialist, and consultant. He has
implemented and designed content
strategies for multiple organizations
and ran a number of projects to
implement documentation workflows
and tool chains. He also bridged the
gap between documentation and
marketing. He is focused on analytics-
based decisions in content strategies,
but values people above assets. Pawel
is also a board member at ITCQF and
the originator and co-host of the "Tech
Writer koduje" podcast.

DITA AS CODE - A MODERN APPROACH TO
THE CLASSIC STANDARD

BEST PRACTICES • JUNE 2022

DITA AS CODE - A MODERN APPROACH TO
THE CLASSIC STANDARD

Tools
Let's look at tools which allow you to adopt DITA in the docs
as code model.

Content authoring

In a "typical" docs-as-code setup, not too much attention is
devoted to this part. Since you use a simple markup language,
like Markdown, you don't need a dedicated doc editor. A text
editor with a plugin will do the job.

If you use DITA, it can be a little more complex. Of course, you
can create DITA content in a simple text editor, but it won't get
you far and your productivity will probably be lower. Authoring
content in DITA requires a more robust and powerful tool. In
fact, writing DITA content is more like coding, so you need
something that is closer to an IDE than a text editor. A good
example of an IDE which supports DITA is Oxygen XML.

However, you can also use an IDE like IntelliJ or Eclipse, and
it requires very little setup. You can even use a rich code editor,
like Visual Studio Code. These solutions may mean you are
less productive than with a dedicated DITA editor, but they
can be free, and are a lot better than a simple text editor. They
also have the advantage of being well-integrated into coding
environments and come equipped with tools for version control
and a variety of other challenges.

Version control system (VCS)
You can use any of the VCSes available on the market. The
most popular VCS among software development teams is git.
You want to adopt the docs-as-code philosophy to be as close
to your devs as possible, so it is likely you will use git provided
by services like GitHub, Bitbucket or GitLab. Git can have a
steep learning curve but it’s a great tool and it’s definitely worth
investing your time to learn it.

Static site generator

The bad news is that you don't have a choice here. The only
free and vendor-independent tool that enables you to transform
DITA into other formats is DITA Open Toolkit. It's a golden
standard and many CCMSes use this tool under the hood.

The good news is that it's a solid and actively-developed tool
with exhaustive documentation and its maintainers try to keep
pace with technology trends. For example, DITA OT offers an
official Docker image and support for Markdown.

You can extend the tool by adding your own plugins. If you
know XSL and Java, you can build some really powerful stuff.
Just look around the official plugin registry to see what’s already
available. Or, if you prefer, you can use one of the existing
output formats and modify it to suit your needs. One option

could be to configure the DITA OT HTML5 output with CSS
and JavaScript until it becomes a fully-fledged static site in its
own right. Another option is to consume the HTML5 output
into your existing website or web CMS and integrate seamlessly
into a publication pipeline that already exists at your company.

Having just one option for selecting a generator can
definitely raise some objections. If you use Markdown, you
have a plethora of options. But when you decide to use
restructuredText, the number of available options drops down
significantly, and you have two or maybe three engines to
choose from. Maybe it's some kind of mysterious law of nature
- the number of available generators decreases as the complexity
of the markup language increases.

Local builds

You can build DITA locally from your command line. At first,
installing the DITA Open Toolkit may seem like a daunting
task. In reality, it’s as simple as, or even simpler than, installing
a regular static site generator. For example, the installation
instructions for Jekyll, one of the most popular generators, tell
you that you need Ruby, RubyGems, GCC and Make. On
the other hand, DITA Open Toolkit requires only Java (JRE
or JDK), and maybe HTML Help Workshop if you want to
generate Microsoft CHM Help. You can also install DITA OT
via Homebrew or use an official Docker image.

Another option is to use transformation scenarios in your DITA
IDE. For example, Oxygen XML offers this feature, and does
not ask you to install anything extra.

Automatic testing

There are two major areas of testing - making sure the
documentation is published successfully and making sure the
content is right.

The first area is familiar to people who maintain websites. You
need to make sure your content was published successfully
which you can achieve by reviewing differences in snapshots
between the previous version and the current version.
You also need to check whether all links work, all images
display, and all accessibility and performance goals are met.
Finally, you make sure that your site is discoverable by web
crawlers, if that’s a concern.

The second area is more familiar to technical writers. Before you
publish your content, you want to make sure it meets internal
standards of quality (styleguide, correct terminology, spelling
and grammar). To achieve that, you can run a series of tests that
will flag potential issues, or sometimes maybe even fix them.

10

BEST PRACTICES • JUNE 2022

DITA AS CODE - A MODERN APPROACH TO
THE CLASSIC STANDARD

The most popular tool to verify “XML correctness” of DITA
is Schematron which can help you check how you use XML
markup in your documents. You can integrate Schematron
with the Oxygen XML editor, or run it at specified times,
like when you push content to a git branch. Schematron is
a great way to enforce your styleguide. It can check if your
document follows rules like “do not create lists with one
item” or “always put a path-like string of characters into a
filepath tag”. You can also add “quick fixes” to Schematron
- small transformations that change existing content into
compliant content.

To check spelling, grammar, punctuation, and other
language-related issues, you can use a free program
like LanguageTool, or integrate with a paid product,
like Acrolinx. You could even integrate something like
Grammarly with your text editor. In addition, you might
want to invest in a command line tool that can measure the
readability score of your documents.

It might be a little more tricky to develop something for
DITA, because you would have to get rid of DITA tags, and
perhaps even segment your content properly. For example,
text in a uicontrol tag is still part of the same sentence,
but an sli tag means a new item in a simple list. Also,
some tags do not need spell checking, like codeph which is
meant to contain code, not language.

You may have better results if you check the readability of
your HTML output. The first major advantage of that is you
are looking at text which is filtered by your ditaval and put
together from all content references and so on. Secondly,
there are a variety of tools that understand HTML, for
example a tool called readability-checker on NPM.

You also want to make sure it reflects the product correctly.
That last part is where DITA can truly shine because of
its semantics. It gives you the power to create various tests
that you wouldn’t be able to use with lightweight markup
languages. For example, you can test if the properties that
you list in the docs actually exist in the config of your
application. Or you can run the commands described in your
docs and make sure they achieve the results you promise. You
can see an example implementation of semantic tests here.

Content review

Since we are working with DITA as code and we are in a
version control platform like Github, along with our friends,
software developers, architects, and product owners, we are
already part of the code review process, we just have to take
advantage of it. A typical way of reviewing code is through
pull requests, and we can review document sources in the
same way. Github, Bitbucket, Gitlab, and other platforms
come with features which allow us to comment on code,
approve or reject pull requests, and prevent merging if tests
are not passed.

Granted, DITA is a complex markup language which
can make it harder to read than something as simple
as Markdown. However, our reviewers in a software
development process are people with a high level of technical
sophistication, and they are usually able to read XML
without any problems. DITA becomes challenging only
when there are a lot of content references to parse, but this
can work, as our reviewers get used to the markup and learn
how DITA works.

Automatic publishing

You can use the same tools and workflows for DITA as for
any other markup language. A great advantage of working
in a software company is that you probably already have a
CI/CD solution that you can plug your docs into. Talk to
developers and devops engineers in your organization to see
what options you have. Let machines do the cumbersome
work of generating the output and publishing it to the server.

What about reuse?
In the docs as code philosophy, there's no place for a CCMS.
However, one of the most useful aspects of a CCMS is how
it helps with reuse . When you switch to a git-based solution,
this feature is no longer available. So what can you do to
make up for this loss?

Before we jump into devising a technical solution to this
challenge, let's think about reuse itself. We often hear that it's
very beneficial and gives you nothing but advantages. But the
truth is that content reuse comes with challenges. You need
to decide how granular your reuse should be. Is reusing topics
enough? Or maybe it would be better to reuse paragraphs?

You also need to think how widespread reuse needs to be.
Across one document? Across a document family? Across all
documents? Each option has its pros and cons. For example,
reusing content across all documents may seem like a good
idea, but after some time you will realize that it's harder and
harder to keep the content generic enough to fit all scenarios.
Also, every change is more expensive because you need to
analyze it from the perspective of every place the content is
used.

Taking all these factors into account, it may be possible
to address content reuse needs by simply making a smart
decision when dividing content into git repos. For example,
you can keep all docs belonging to the same product family
in one repo. This way, you can reuse content between specific
docs. In this scenario, your IDE, like Oxygen XML, will help
you with renaming and moving resources without breaking
stuff. Working this way is very similar to coding. You have
your software project cloned locally, you use IDE to write
and edit code without breaking things.

11

BEST PRACTICES • JUNE 2022

DITA AS CODE - A MODERN APPROACH TO
THE CLASSIC STANDARD

But just like with a software project, there comes a moment
when you need to use an external library, that is content stored
outside your project. How can you handle this requirement?
The same way you would handle it in a software project - by
using dependency management.

Your document is a project that requires some external
resources to build properly. In case of a software project, you
have libraries available in different repositories, like Artifactory
or Maven, from which you download them and then use them
in your code. You need to do the same for your documents. If
you need to use some assets, like common topics or images,
across different documents stored in separate repositories,
create a place where you will publish these assets and then add
them as a dependency to your document.

We use DITA OT to build the document. It's like using Gradle
to build a Java project. We could write a plugin for the toolkit
that downloads the assets before building the document. DITA
OT offers many extension points where we can add this task.

Another option that you can consider is git submodules. You
create a repository with common assets and then add this
repository as a submodule to the git repository that stores
source files for the document. After that, you can pull changes
to the linked submodule when you pull changes for your
document. This solution has one advantage over using a plugin
for DITA OT - the shared resources are available at the time of
editing the document.

What about link management?
Even without a CCMS, link management is an area where your
“DITA IDE” shines. Similar to IDEs used for writing code,
Oxygen XML offers some refactoring options that help you
manage links. For example, the option for renaming a resource,
like a topic, isn’t limited to changing the name of the resource.
It can also update all references for the resource.

An IDE can help us with managing links at editing time. On
top of that, we need other mechanisms that catch invalid links
at other stages of the content delivery process.

At the time of committing changes, we can use a pre-commit
hook in git to run a script that automatically validates all the
links in the repository and then blocks the commit if it finds
any issues.

We can also create validation builds that run when you create a
pull request. The policy can be configured to prevent merging
changes if the validation build fails. This gives you another
safety mechanism that protects you against publishing broken
content. Validation builds can be part of the Automatic
testing pipeline.

Example setup for DITA as code
Here’s an example “recipe” for the toolset that you could use in
the DITA as code model:

	♦ Content authoring - Oxygen XML Author with the git
plugin

	♦ Version control system - git through Bitbucket

	♦ Static site generator - DITA Open Toolkit with custom
plugins, used in a Docker image

	♦ CI/CD solution - TeamCity

	♦ Testing tools - Schematron, Vale, custom validators
written in Python

	♦ Hosting solution - a Node.js server serving static HTML5
pages from an S3 bucket, Elasticsearch

We aren’t in any way sponsored by or associated with the
providers of these tools. We simply want to give you something
practical that complements the theoretical description of
the tools that we provided in the previous sections. We have
experience working with these solutions, so we know that this
setup works well for the DITA as code model.

DITA as code - what’s the catch?
DITA as code has its advantages but that’s just one side of the
story. To our knowledge, so far nobody has invented a silver
bullet for the content delivery process and DITA as code is no
exception.

If you want devs to contribute to the documentation, they may
be reluctant to use an XML standard. They are more inclined
to use Markdown and you may have a hard time convincing
them to change their mind. Their reluctance may in turn
create a temptation to delegate all content-related tasks to tech
writers; they already know the content delivery system inside-
out so they are able to make changes faster and better, right?

But there’s hope. At the soap! 2019 conference, Panny Luo in
her talk “Content as Code: A manager’s perspective”, showed
us how her organization managed to implement the DITA
as code model and how content specialists collaborated with
devs. If you have a strong business case for using DITA at
your organization, e.g., reuse, more granular control over your
content, robust semantic options - you may be able to convince
all the stakeholders to play along.

A big catch of DITA as code is that you have to code a lot.
Maintain your development infrastructure, localization, and
publication. There are tools that can help, but you have to
customize them and know how to use them.

12

BEST PRACTICES • JUNE 2022

DITA AS CODE - A MODERN APPROACH TO
THE CLASSIC STANDARD

DITA as code is also harder for contributors (both
writers and reviewers) who are less technical. A content
management system comes with a streamlined user
interface, kind of like writing Word documents. This
creates a familiar experience to most people and is easy
to learn for newcomers. When maintaining DITA
as code, the contributors have to know the principles
of VCS, understand their development pipeline, and
troubleshoot daily problems with both their computers
and their infrastructure.

When you write content Markdown, you can pick and
choose which editor you want to use. You have plenty
of options, many of them free. When you use DITA, it’s
quite the opposite. You only have a few options and the
best ones aren’t free. In a big organization this cost may
not be significant but in smaller companies it can be a
deal breaker.

Conclusion
Here are the key takeaways from this article:

	♦ DITA can be used in the docs as code model - we
have done it and it works.

	♦ In some areas, DITA can offer more than
lightweight markup languages, like better reuse
possibilities and semantics that can be used for
testing

	♦ DITA as code is not a silver bullet and comes
with challenges, like a small selection of content
authoring tools and a steeper learning curve for
non-technical users than Markdown

	♦ You need to weigh all the pros and cons before
deciding if the DITA as code model is the right fit
for you and your team.

13

Two-Hour Sessions Held Weekly
Every Wednesday
September 28 - November 2, 2022
Practical application of the four principles of
minimalism to select appropriate content for your
users, structure it consistently, author it for easy
understanding, and make it readily accessible.
https://comtech-serv.com/event/minimalism-9-22/

Two-Hour Sessions Held Weekly
Every Thursday
September 29 - November 17, 2022
A systematic approach to defining the management,
creation, production, delivery, and assessment of
content, while balancing the considerations of
organizational goals and capabilities with user needs
and expectations.
https://comtech-serv.com/training/content-strategy/

BEST PRACTICES • JUNE 2022

WRITING FOR LOCALIZATION 101

Dana Aubin, Comtech Services

Writing for Localization 101

Localization isn’t just about what you write. It’s
also about how you write and the processes that
support you. This article provides the questions
that you should consider when adding
translation or localization to your processes.
I'll share best practices gathered from my
research, conversations with industry experts,
such as Dominique Trouche from WhP and
Karen Ewing from Acrolinx, and organizations
currently writing content for localization.

Even if you’re not localizing now, following
localization best practices can improve the
quality of your source content. Well-written
content helps translation, but it also helps
native and non-native English speakers.
Additionally, being aware of the considerations
and best practices for localization can help
authors check their biases while writing to
create more inclusive content.

Translation and localization are sometimes written
as T9N (translation) and L10N (localization) to

shorten the terms.

Translation vs. localization
First, we need to define the terms translation
vs. localization, which are often used
interchangeably. Translation means changing
content of one language into another
language, for example, English into French.
Localization, on the other hand, goes beyond
translating. Localization adapts content to fit
a specific market or country and adjusts it to
accommodate linguistic, cultural, political, and
legal differences.

Organizations consider multiple aspects
when localizing their content. Depending
on the maturity of the localization process, a
company may do one or more of the following
localization efforts:

	♦ Language variants

	♦ Metadata and keywords

	♦ Taxonomy/filters

	♦ Alt text

	♦ URL

	♦ Images

	♦ Examples

	♦ Cultural references

If your organization is considering localization,
you should start with your content strategy.

Content strategy
Content strategy is how you plan, develop,
deliver, manage, and measure the types of
content about your product to meet the
needs of your customers throughout their
journey. Your content strategy should consider
localization in every part, right from the
beginning.

Dana Aubin
Comtech Services

Dana Aubin is a technical writer
and content strategist based in
Denver, Colorado, USA. She enjoys
gluten-free baking, teaching her old
dog new tricks, and karaoke spin
class (virtually due to the pandemic,
which is still quite fun for her, but
maybe not for her spouse and dog).

14

BEST PRACTICES • JUNE 2022

WRITING FOR LOCALIZATION 101

Considerations

	♦ What are your goals? Are you just trying to meet
contractual obligations, or do you want to create
content that addresses the needs of your users?

	♦ Do you have an enterprise content strategy? If so, does
it address how translated content is updated? Does it
consider how you reuse content affects translation? If
not, is there willingness to work together to create one?

	♦ Do you have a corporate terminology list? A corporate
taxonomy?

	♦ What are the resources, budget, and schedule for
localization? These can be the biggest factors that
determine what content you can localize and to what
extent you localize the content.

	♦ What content should be localized? Into which
languages and variants do you need to localize?

* What level of localization is expected in your
industry?

* What are the legal, governmental, and regulatory
requirements you must follow? Are there any political
issues that you need to consider?

* Have you conducted research on the users in your
target languages? Do you have personas for your
target users?

	♦ Who creates the content—tech pubs, support, services?
Does content created by all groups need the same level
of translation? For some content, machine translation
is acceptable, but other content needs to be translated
and localized by a human.

	♦ What tools and processes will you use to create the
content and manage the translations?

	♦ Do you need to translate any language into a pivot
language (bridge language) before translating into the
target language?

	♦ Has your localization service provider (LSP) reviewed
your terminology, taxonomy, information model,
or style guide? If so, what kind of changes did they
suggest?

Best Practices

	♦ Have a clear idea of your goals.

	♦ Develop an enterprise content strategy that includes
localization from the beginning of each project.

	♦ Determine what you want to achieve is feasible given
your budget, resources, and schedule.

	♦ Determine what needs to be localized; what level
of localization is needed; and whether machine
translation, human translation, or a combination
should be used.

	♦ Determine target languages and variants.

	♦ Create and translate an enterprise terminology list.

	♦ Conduct user research for your target languages.

	♦ Choose authoring and translation tools for the
enterprise if possible.

	♦ Work with your LSP or a localization expert to ensure
that your content strategy, information model, style
guide, and tools are optimized for localization.

Workflows

Writing processes should include steps that improve quality
because high-quality source content enables high-quality
translations. Starting with good content also means less
back and forth with your LSP to resolve questions and
fewer changes from your in-country reviewers, which can
reduce localization time.

15

Two-Hour Sessions Held Weekly
Every Thursday
September 29 - December 8, 2022
A hands-on walk-through of the essential DITA
fundamentals, programming skills, and DITA Open
Toolkit configurations required to style and publish
DITA XML source.

https://comtech-serv.com/event/publishing-dita-9-2022/

BEST PRACTICES • JUNE 2022

WRITING FOR LOCALIZATION 101

Considerations

	♦ How thorough are your review processes? Does your
content go through technical review, peer editing,
substantive editing, validation? Is content reviewed to
ensure that content is tagged correctly?

	♦ Do you use controlled language tools to improve
quality? Writers and editors can perform quality checks
before content is sent to translation using controlled
language tools such as Schematron, Acrolinx, Congree,
Kaleidescope, or HyperSTE.

	♦ Do you have in-house localization experts managing the
translation workflow?

	♦ Do you work with multiple LSPs?
	♦ Do you own your translation memory?
	♦ When do you send content for translation? Once the

English content is complete or iteratively?
Best practices

	♦ Perform quality checks using automated tools.
	♦ Require a thorough review process for style, tagging,

technical content.
	♦ Send for review when a subset of the final deliverable

(whether topic, section, or chapter) is stable.
	♦ In-country review by native speaker with product

expertise.
	♦ Hire linguistics professionals if you want to manage your

translation memory in-house.

Structured authoring

Structured authoring is a method of writing that is organized,
consistent, predictable, and reusable. Content is broken
down into components, and how those components can be
arranged into deliverables is defined by your information
model.
Considerations

	♦ Do you have an information model? Was localization
considered when writing your information model? Are
your writers trained on the information model?

	♦ Are you using a structured authoring schema such as
DITA, S1000D, or DocBook?

	♦ Are you using a tool that supports the schema along with
a component content management system (CCMS)?

	♦ Which reuse mechanisms are you using? How granular is
your reuse?

Best practices

	♦ Use DITA as your structured authoring schema. DITA
provides these additional benefits:

	 * Separates authoring from formatting which
	 enables reuse and lets authors focus on writing
	 rather than desktop publishing. This separation
	 also helps with languages that don’t use the same
	 formatting conventions.
	 * Uses semantic tagging of elements, which can help
	 your LSP understand the purpose of the text.
	 * Provides multiple reuse mechanisms, and reuse 	
	 reduces the amount of content that needs to be
	 translated.

	♦ Use a DITA-aware CCMS.
	♦ Use a vendor familiar with DITA.
	♦ Understand how your LSP localizes your content.
	♦ Only use proper nouns as variables.
	♦ Conditionalize sentences, paragraphs, or larger blocks of

text instead of words or phrases.

Creating content

Good writing uses clear, simple, unambiguous language, and
is a prerequisite to good translations.
Considerations

	♦ Do you have a style guide?
	♦ Are your writers using minimalism principles?
	♦ Are you using a controlled language standard such as

Simplified Technical English (STE)?
Best practices

	♦ Develop a style guide with writing rules and a preferred
word list.

	♦ Create a terminology list with translations.
	♦ Train writers in minimalism and localization.
	♦ Use a controlled language standard such as STE.
	♦ Use a controlled language tool to help enforce

terminology and style guidelines
	♦ For graphics, deliver one of the following:

	 * .svg with text in the code that can be updated by
	 your LSP
	 * callouts on the image with numbers, not alphas,
	 so that the corresponding labels can be written in
	 the authoring tool
	 * source files that can be updated by your LSP

	♦ Include notes to your LSP if content could be
ambiguous.

16

BEST PRACTICES • JUNE 2022

WRITING FOR LOCALIZATION 101

Style guidelines for localization

	♦ Write instructions as commands (imperative verb form).
	♦ Give one command per sentence unless multiple actions occur simultaneously.
	♦ Avoid idiomatic expressions.
	♦ Cover one topic per paragraph.
	♦ Use active voice vs. passive voice.
	♦ Don’t use helping verbs (for example, using “to have” to form present perfect).
	♦ Don’t use intransitive verbs as transitive verbs (for example, the window displays vs. the window is displayed).
	♦ Use gerund form of verbs only as technical name or as a modifier in a technical name.
	♦ Use commas after introductory phrases.
	♦ Don’t use semicolons.
	♦ Write list items as complete sentences.
	♦ Don’t omit “that” as a conjunction between main and subordinate clauses.
	♦ Don’t omit words (contractions are ok).
	♦ Make sure pronouns aren’t ambiguous (this, that, these, those), but don’t use he/she.
	♦ Use a word for only one meaning or part of speech.
	♦ Don’t use Latin abbreviations.
	♦ Use articles (a, an, the) and demonstrative pronouns (this, that, these, those).
	♦ Use noun clusters of 3 words or fewer.
	♦ Write concise and clear sentences with 20-25 words maximum.
	♦ Write informative, not instructive notes.

17

Two-Hour Sessions Held Weekly
Every Wednesday
September 28 - November 2, 2022
The goal of technical writers and editors alike is to produce
consistent, accurate, and complete information products.
Reaching this standard requires a systematic approach to
condensation, organization, and correction of the copy. Work
through the five levels of editing and gain strategies and tips for
creating cleaner content.
https://comtech-serv.com/event/editing-2/minimalism-9-22/

Summary

Best practices for translation and localization are
essentially best practices for technical writing.
Clear, concise writing will improve not only
your translated and localized content, but all
aspects of content quality while optimizing the
customer experience. It will reduce the workload
of reviewers and editors, decrease the turnaround
time on deliverables, and reduce overall costs.
These considerations and best practices for
localization are the basis for creating quality
content that meets the needs of your users while
balancing the needs of your organization.

BEST PRACTICES • JUNE 2022

MANAGER’S CALENDAR
Please visit our web site at www.infomanagementcenter.com for more information on these and other events.

ConVEx IDEAS Conference
July 25 – 27, 2022: Online
https://ideas.infomanagementcenter.com/

GlobalLink NEXT
September 13 – 15, 2022: San Francisco, California
https://globallinknext.com/

Best Practices Conference
September 19 – 21, 2022: Baltimore, Maryland
https://bp.infomanagementcenter.com/

NORDIC TechKomm Copenhagen
September 21 – 22, 2022: Copenhagen, Denmark
https://www.nordic-techkomm.com/

Minimalism: Creating Information People Really Need
September 28 – November 2, 2022: Online Course
https://comtech-serv.com/event/minimalism-9-22/

Editing Essentials for Writers and Editors
September 28 – November 2, 2022: Online Course
https://comtech-serv.com/event/editing-2/

Developing Your Content Strategy
September 29 – November 17, 2022: Online Course
https://comtech-serv.com/event/content-strategy/

Publishing for DITA
September 29 – December 8, 2022: Online Course
https://comtech-serv.com/event/publishing-dita-9-2022/

LavaCon
October 23 – 26, 2022: New Orleans, Louisiana
https://lavacon.org

tcworld 2022
November 8 – 10, 2022: Stuttgart Germany
https://tcworldconference.tekom.de/

Best Practices 2022 is excited to be in-person again with our single-track event with a highly
interactive design! The theme is A Seat at the Table — it’s all about inclusivity, relationships, and
influence!

	♦ Giving employees a seat at your table — listening, involving, delegating
	♦ Giving customers a seat at your table — conducting user studies, partnering with

customers, and using inclusive language
	♦ Getting a seat at your product team’s table — influencing product direction, taking on

new responsibilities
	♦ Getting a seat at your management’s table — being visible, getting budget

Find more information about CIDM’s Best Practices Conference at
https://bp.infomanagementcenter.com/

18

BEST PRACTICES • JUNE 2022 19

